Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		

Lattice properties of acyclic pipe dreams

Noémie Cartier

13 février 2023

Joint work with :

Nantel Bergeron Cesar Ceballos Vincent Pilaud

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
• 0 0000 0	000 000000	0 0 000		
Lattices and lattice quotients				

What is a lattice?

A poset (X, \leq) is a **lattice** if and only if any pair $a, b \in X$ has :

- a **join** or least upper bound $a \lor b$;
- a **meet** or greatest lower bound $a \wedge b$.

Some examples :

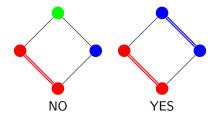
- the boolean lattice (P(A),⊆) on subsets of a set A, with the join given by ∪ and the meet by ∩;
- the **divisibility order** on positive integers.

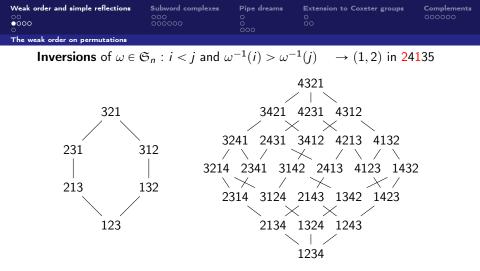
Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
○● ○○○○ ○	000 000000	0 0 000		
Lattices and lattice quotients				

For (X, \leq, \lor, \land) a lattice and \equiv an equivalence relation on X, we say that \equiv defines a **lattice quotient** on X if for any $x, x', y, y' \in X$ such that $x \equiv x'$ and $y \equiv y'$:

•
$$x \lor y \equiv x' \lor y';$$

• $x \land y \equiv x' \land y'.$





Right weak order on permutations : $\pi \leq \omega \iff inv(\pi) \subseteq inv(\omega)$

Theorem

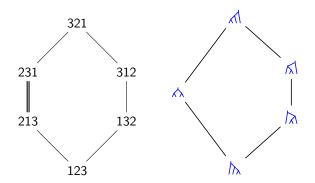
The weak order on \mathfrak{S}_n is a **lattice**.

Noémie Cartier

Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
○○ ○●○○ ○	000 000000	0 0 000		
The weak order on permutations				

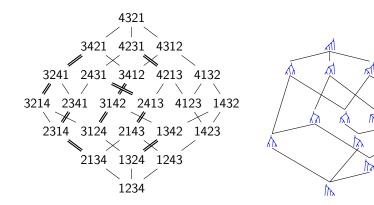
A classic lattice congruence of the weak order : the Tamari lattice



A lattice morphism : insertion into binary search trees.

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 00●0 0	000 000000	0 0 000		
The weak order on permutations				

A classic lattice congruence of the weak order : the Tamari lattice



R

Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 000● 0	000 000000	0 0 000		
The weak order on permutations				

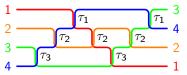
Covers of the right weak order :

UabV < UbaV312456 < 314256

$$\Leftrightarrow \quad \omega \lessdot \omega \tau_i \text{ with } \omega(i) \lt \omega(i+1)$$

 \rightarrow importance of generating set $S = \{\tau_i = (i, i+1) \mid 1 \leqslant i < n\}$

Sorting network \leftrightarrow simple reflections product

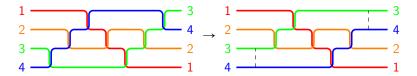


Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 •	000 000000	0 0 000		
Words on simple reflections				

Properties of words on S :

- minimal length for $\omega : I(\omega) = |\operatorname{inv}(\omega)|$ (reduced words)
- $\pi \leqslant \omega$ iff $\omega = \pi \sigma$ and $I(\omega) = I(\pi) + I(\sigma) : \pi$ is a **prefix** of ω
- if $\pi \leqslant \omega$ then any reduced expression of ω has a reduced expression of π as a ${\bf subword}$

Reduction to minimal length :



Weak order and simple reflections 00 00000 0	Subword complexes ●00 ○00000	Pipe dreams 0 0 000	Extension to Coxeter groups 0 00	Complements 000000
Subwords and flips				

Fix Q word on $S, \omega \in \mathfrak{S}_n$

 $\mathsf{SC}({\it Q},\omega)$ the subword complex on ${\it Q}$ representing ω :

base set : indices of Q

 \blacksquare faces : complementaries of indices sets containing an expression of ω

An example :

Facet $\{1, 2, 3, 8, 9\}$ of SC $(\tau_4 \tau_3 \tau_2 \tau_1 \tau_4 \tau_3 \tau_2 \tau_4 \tau_3 \tau_4, 25143)$

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		
Subwords and flips				

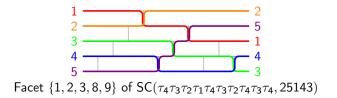
Fix Q word on $S, \omega \in \mathfrak{S}_n$

 $\mathsf{SC}({\it Q},\omega)$ the subword complex on ${\it Q}$ representing ω :

base set : indices of Q

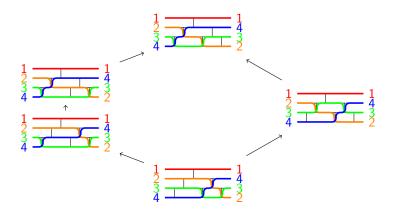
 \blacksquare faces : complementaries of indices sets containing an expression of ω

An example :

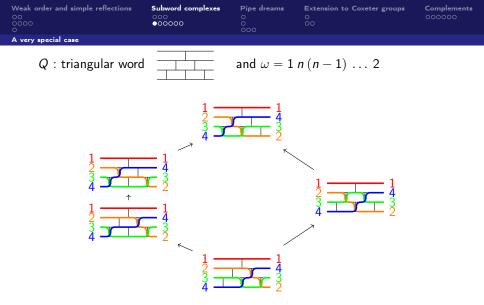


Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		
Subwords and flips				

Structure given by **flips** : from one facet to another



Noémie Cartier Lattice properties of acyclic pipe dreams



 \Rightarrow this is the Tamari lattice!

Noémie Cartier

Lattice properties of acyclic pipe dreams

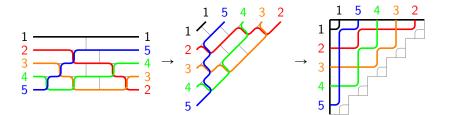
Weak order and simple reflections 00 00000 0	Subword complexes ○○○ ○●○○○○	Pipe dreams 0 0 000	Extension to Coxeter groups 0 00	Complements 000000
A very special case				

Why the Tamari lattice?



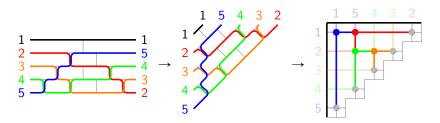
Weak order and simple reflections 00 00000 0	Subword complexes ○○○ ○○●○○○	Pipe dreams 0 0 000	Extension to Coxeter groups 0 00	Complements 000000
A very special case				

Why the Tamari lattice?



Weak order and simple reflections 00 0000 0	Subword complexes	Pipe dreams 0 0 000	Extension to Coxeter groups 0 00	Complements 000000
A very special case				

Why the Tamari lattice?



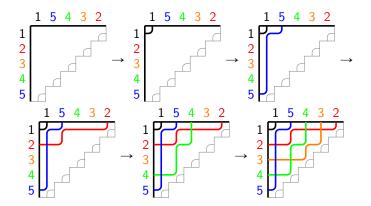
A binary tree appears on the pipe dream \rightarrow bijection

Tree rotations \equiv flips \rightarrow lattice isomorphism (Woo, 2004)

Weak order and simple reflections 00 00000 0	Subword complexes ○○○ ○○○○●○	Pipe dreams 0 0 000	Extension to Coxeter groups 0 00	Complements 000000
A very special case				

An equivalent to the insertion in binary search trees : $\ensuremath{\text{insertion}}$ algorithm on $\ensuremath{\text{pipes}}$

Example : inserting permutation 15243



Weak order and simple reflections 00 00000 0	Subword complexes ○○○ ○○○○○●	Pipe dreams 0 0 000	Extension to Coxeter groups 0 00	Complements 000000
A very special case				

Reminder : the Tamari lattice is a lattice quotient of the weak order

- \Rightarrow so is the flip order on this subword complex
- \Rightarrow lattice morphism : BST insertion \iff pipes insertion

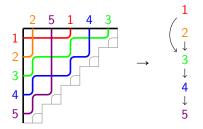
Can we find other pipe dream sets that are lattice quotients of parts of the weak order ?

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 000		
Contact graph and acyclic facets				

First extension : choose any permutation for the exit.

Contact graph :

- vertices : pipes
- edges : from a to b if a -b appears in the picture



Why look at this?

Acyclic contact graph \iff vertex of the **brick polytope**

Noémie Cartier

Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 000		
Triangular pipe dreams				

First extension : choose any permutation ω for the exit.

Restriction : only consider the set of acyclic pipe dreams $\Pi(\omega)$

- \rightarrow from permutations to pipe dreams : contact graph extensions
- \rightarrow domain of the application : weak order interval [id, ω]
- \rightarrow name of the application : Ins_ω

Theorem (Pilaud)

For any $\omega \in \mathfrak{S}_n$, the map Ins_ω is a **lattice morphism** from the weak order interval $[id, \omega]$ to the set of acyclic pipe dreams $\Pi(\omega)$ ordered by ascending flips.

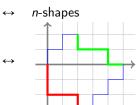
Two algorithms to compute the morphism :

- insertion algorithm (pipe by pipe)
- sweeping algorithm (cell by cell)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		
Generalized pipe dreams				

Second extension : other sorting networks

alternating sorting networks



Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 0●0		
Generalized pipe dreams				

Second extension : other sorting networks

 $Ins_{F,\omega}$ is still well defined, BUT...

- some linear extensions can be outside of $[id, \omega]$
- the flip order is not always the image of the weak order

Restrictions :

- only consider strongly acyclic pipe dreams
- order on pipe dreams : acyclic order (weaker than flip order)

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 00●		
Generalized pipe dreams				

Theorem

For any n-shape F and $\omega \in \mathfrak{S}_n$ sortable on F, the map $\operatorname{Ins}_{F,\omega}$ is a **lattice morphism** from the **weak order interval** [id, ω] to the **strongly acyclic** pipe dreams ordered by the acyclic order.

Theorem

If the maximal permutation $\omega_0 = n(n-1) \dots 21$ is sortable on *F*, then any linear extension of a pipe dream on *F* with exit permutation ω is in [id, ω], and **all acyclic pipe dreams are strongly acyclic**.

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000	• • •	
A similar framework				

Further generalization : Coxeter groups

symmetric group \mathfrak{S}_n	Coxeter group W
transpositions $(i, i + 1)$	simple reflections
reduced pipe dreams	subword complex
pair of pipes	root in Φ
P [#] acyclic	root cone is pointed
$\pi \in lin(P)$	root configuration $\subseteq \pi(\Phi^+)$

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
0000	000000	000	00	
		000		
Work in progress				

Theorem

For any word Q on S and $w \in W$ sortable on Q, the map $lns_{Q,w}$ is **well-defined** on the weak order interval [e, w].

Theorem (Jahn & Stump 2022)

If the Demazure product of Q is w_0 , then for any $w \in W$ the application $Ins_Q(w, \cdot)$ is **surjective on acyclic facets** of SC(Q, w).

Conjecture

If Q is an alternating word on S and $w \in W$ is sortable on Q, then the application $Ins_{Q,w} : [e, w] \mapsto SC(Q, w)$ is a **lattice morphism** from the left weak order on [e, w] to its image.

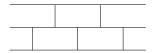
Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000	0 0●	
Work in progress				

Thank you for your attention !

Noémie Cartier Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		00000

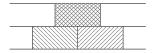
Q a word on S seen as a sorting network, here $\omega = \omega_0 = n(n-1)\dots 1$



Weak order and simple reflections	Subword complexes 000 000000	Pipe dreams 0 0 000	Extension to Coxeter groups 0 00	Complements 0●0000
		000		

Q a word on S seen as a sorting network, here $\omega = \omega_0 = n(n-1)\dots 1$

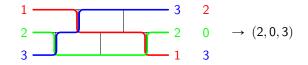
bricks of *Q* : bounded cells



Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
				000000
0000	000000	000	00	
		000		

Q a word on S seen as a sorting network, here $\omega = \omega_0 = \mathit{n}(\mathit{n}-1) \dots 1$

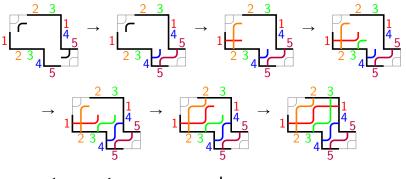
- **bricks** of *Q* : bounded cells
- brick vector of f ∈ SC(Q, ω) : ith coordinate is the number of bricks under pipe i



brick polytope of $SC(Q, \omega)$: convex hull of brick vectors of facets

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		000000

Sweeping algorithm for $\omega=23145$ and $\pi=21345$



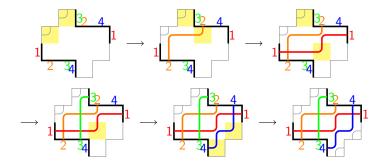
if ω⁻¹(i) < ω⁻¹(j), add an elbow γ
if ω⁻¹(i) > ω⁻¹(j) and π⁻¹(i) > π⁻¹(j), add a cross +
if i, j inversion of ω and non-inversion of π, add an elbow γ if you can still make the pipes end in order ω that way (3a), and a cross + otherwise (3b)

Lattice properties of acyclic pipe dreams

Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		000000

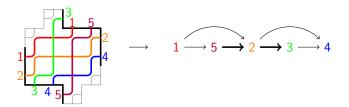
Insertion algorithm for $\omega=$ 3241 and $\pi=$ 2134

The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.



Weak order and simple reflections	Subword complexes	Pipe dreams	Extension to Coxeter groups	Complements
00 0000 0	000 000000	0 0 000		00000

An acyclic but not strongly acyclic facet :



One linear extension : $15234 \neq 31524$.