

Lattice properties of acyclic pipe dreams

Noémie Cartier (Université Paris-Saclay)

March 9, 2022

Joint work with Florent Hivert, Vincent Pilaud, Nantel Bergeron and Cesar Ceballos.

A generating set for \mathfrak{S}_n : $S = \{ \tau_i = (i, i + 1) \mid i \in [\hspace{-0.65mm} [1, n - 1] \hspace{-0.65mm}] \}$

 \rightarrow any permutation can be written as a word on the alphabet S.

An idea: study the subwords of a word Q

Word as a sorting network:

Representation of subwords:

Pipe dream: filling the shape with crosses $+$ and elbows λ .

Set the exit permutation to $\omega = 1$ n $(n - 1) \dots 2$

 \rightarrow every pipe except 1 has three elbows: two **J** and one \mathbf{r} .

What happens if we put vertices on the elbows and edges on the pipes between them?

Set the exit permutation to $\omega = 1$ n $(n - 1) \dots 2$

 \rightarrow every pipe except 1 has three elbows: two **J** and one \mathbf{r} .

What happens if we put vertices on the elbows and edges on the pipes between them?

A (mirrored) binary search tree!

pipe dreams with *n* pipes \longleftrightarrow binary trees with $n - 1$ nodes

Equivalent to the rotation operation? To the insertion algorithm? Yes and yes.

rotations \longleftrightarrow flips (ascending here)

insertion algorithm \longleftrightarrow drawing the pipes one by one

Ex: in order 15243

Previously: the set of pipe dreams with exit permutation $1 n (n - 1) \dots 2$, partially ordered by oriented flip, is a lattice.

Can we extend this result?

First generalization: set any $\omega \in \mathfrak{S}_n$ as the exit permutation. Problem: not all pipe dreams work.

They need to be reduced:

But it's still not enough! They also need to be acyclic.

Definition

P pipe dream, $P^{\#}$ the contact graph of P:

- vertex \longleftrightarrow pipe
- edge from *i* to $i \leftrightarrow$ contact \overline{C}

P acyclic \iff P[#] acyclic

 $\Sigma(\omega)$: set of reduced acyclic pipe dreams of exit permutation ω

lin (P) : **linear extensions** of $P^{\#}$

- $\bullet \; \{\mathsf{lin}(P)\}_{P \in \mathsf{\Sigma}(\omega)}$ is a partition of the weak order interval $[\mathsf{id}, \omega]$
- $\text{lin}(P)$ is an interval of the weak order
- the projections to the min and max of these intervals are order-preserving

Theorem (Pilaud)

The poset of acyclic reduced triangular pipe dreams of exit permutation $ω$ is a lattice congruence of the weak order interval [id, $ω$].

Ex: lattice congruence for $\omega = 31524$

Can we generalize this result to other sorting networks?

 $\boldsymbol{\times}$ not true in most sorting networks, even ones sorting $n (n - 1) \dots 2 1$

Restriction to alternating sorting networks:

An alternating sorting network on *n* pipes \iff an *n*-shape:

Structure of an *n*-shape:

- **n** an entrance path of length *n* at its south-west
- **a** an exit path of length n at its north-east
- a stair path at its north-west
- a stair path at its south-east

Pipe dream on an *n*-shape F: filling F with crosses $+$ and elbows \sim Reduced pipe dreams, contact graphs, acyclic pipe dreams, flips: same

- $\Sigma_F(\omega)$: acyclic reduced pipe dreams on F with exit permutation ω
- \bullet lin (P) : linear extensions of $P^{\#}$

If
$$
\Sigma_F(P) \neq \emptyset
$$
, is $\{ \text{lin}(P) \mid P \in \Sigma_F(\omega) \}$ a partition of $[\text{id}, \omega]$?

No. A counter-example:

Some slightly weaker (but true!) properties:

- for $P, P' \in \Sigma_F(\omega), P \neq P' \iff \text{lin}(P) \cap \text{lin}(P') = \emptyset;$
- $\bullet\ \bigcup_{P\in \mathsf{\Sigma}_\mathsf{F}(\omega)} \mathsf{lin}(P)$ is a lowerset;
- $\bigcup_{P \in \Sigma_F(\omega)} \dots$, but not $\bigcup_{P \in \Sigma_F(\omega)} \text{lin}(P)$.

Lemma

If $\pi = UbaV \in \mathfrak{S}_n$ is in $\text{lin}(P)$ and $a < b$, then $\pi' = UabV$ is either in $\mathsf{lin}(P)$, or in $\mathsf{lin}(P')$ with P' obtained from P with a descending flip of pipes a and b.

Ins $_F(\omega, \pi)$: the only $P \in \Sigma_F(\omega)$ such that $\pi \in \text{lin}(P)$

How do we find $\ln s_F(\omega, \pi)$?

Option 1: a sweeping algorithm to build P cell by cell. Option 2: an insertion algorithm to build P pipe by pipe in order π .

[Insertion algorithm](#page-18-0)

Sweeping algorithm: for $\omega = 23145$ and $\pi = 21345$

 $\mathbf{1}$ if $\omega^{-1}(i) < \omega^{-1}(j)$, add an elbow $\overline{c_2}$ if $\omega^{-1}(i) > \omega^{-1}(j)$ and $\pi^{-1}(i) > \pi^{-1}(j)$, add a cross **3** if i, j inversion of ω and non-inversion of π , add an elbow \sim if you can still make the pipes end in order ω that way (3a), and a cross \pm otherwise (3b)

The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Example: $\omega = 3241$, $\pi = 2134$:

Does it work?

If $\pi \leq \omega$, yes, because:

- all free elbows accessible to a pipe can be completed at once;
- \bullet the pipes never go outside of the *n*-shape;
- if a pipe starts vertically (resp. ends horizontally), there will be an accessible free elbow facing its start (resp its end) when it is inserted;
- the resulting pipe dream is reduced.

The way $\text{Ins}_F(\omega, \pi)$ is created guarantees that $\pi \in \text{lin}(\text{Ins}_F(\omega, \pi))$.

The insertion is order-preserving.

ls it a lattice morphism from $\bigcup_{P\in \Sigma_{\mathcal{F}}(\omega)} \mathsf{lin}(P)$ to $\Sigma_{\mathcal{F}}(\omega)$?

Not in general:

- $\bullet\ \bigcup_{P\in \Sigma_\mathcal{F}(\omega)} \mathsf{lin}(P)$ is a lowerset but not always an interval;
- $\ln s_F(\omega, \cdot)$: $\lceil id, \omega \rceil \mapsto \sum_F(\omega)$ is not always surjective.

But if $\Sigma'_F(\omega) = \text{Ins}_F(\omega, [\text{id}, \omega])$, then $\text{Ins}(\omega, \cdot) : [\text{id}, \omega] \mapsto \Sigma'_F(\omega)$ is a lattice morphism.

Lemma

Let P be a reduced pipe dream on F and i, j be pipes. If i has an elbow e weakly north-west to an elbow e' of j, and the rectangle with e as its north-west corner and e' as its south-west corner is contained in F, then $i \rightarrow j$ in $P^{\#}.$

Lemma

Let
$$
P \in \Sigma_F(\omega)
$$
 and $a, b, c \in [1, n]$ such that $a < b < c$ and $\omega^{-1}(c) < \omega^{-1}(b) < \omega^{-1}(a)$.

If there is an elbow of P containing the pipes a and c, one of the two following statements is true:

- \bullet a \rightarrow b and c \rightarrow b in P#;
- $b \rightarrow a$ and $b \rightarrow c$ in $P^{\#}$.

Lemma (Björner & Wachs, 1991)

Let \lhd be a partial order on $\llbracket 1, n \rrbracket$. Suppose that for all $a < b < c$:

- $a \leq c \Rightarrow a \leq b$ or $b \leq c$
- $c \leq a \Rightarrow c \leq b$ or $b \leq a$

Then the set of linear extensions of \lhd is an interval.

Theorem

For $P \in \Sigma_F(\omega)$, the set lin $(P) \cap \text{id}, \omega$ is an interval.

Lemma

Let p^{\uparrow} and p^{\downarrow} be the respective projections on the top and the bottom of the fibers of $\text{Ins}_F(\omega, \cdot) : [\text{id}, \omega] \mapsto \Sigma_F(\omega)$. They are both order-preserving.

Theorem

The map $\text{Ins}_F(\omega, \cdot) : [\text{id}, \omega] \mapsto \sum_F'(\omega)$ is a lattice morphism.

In which cases do we have $\bigcup_{P \in \Sigma_F(\omega)} \mathsf{lin}(P) = [\mathsf{id}, \omega]$ (and thus $\Sigma'_F(\omega) = \Sigma_F(\omega)$?

Theorem

If the alternating word corresponding to F contains a reduced expression of the permutation $n (n - 1) \dots 2 1$, then for any $P \in \Sigma_F(\omega)$, $\text{lin}(P) \subseteq [\text{id}, \omega]$.

Thus in that case $\Sigma_F(\omega)$ is a lattice quotient of $\lbrack \text{id}, \omega \rbrack$.

Constructing an alternating reduced word of $n (n - 1) \dots 2 1$:

- choose $\epsilon \in \{-, +\}^n$
- entrance path: from $(0, 0)$, k^{th} step south if $\epsilon_k = -$, east if $\epsilon_k = +$
- exit path: from $(n, 0)$, k^{th} step west if $\epsilon_k = -$, north if $\epsilon_k = +$
- stair paths from $(0, 0)$ to $(|\epsilon|_+, |\epsilon|_+)$ and from $(|\epsilon|_+, -|\epsilon|_-)$ to $(n, 0)$

Can we generalize this even more?

Theorem

For $Q \in S^*$ and $w \in W$ such that $SC(Q, w) \neq \emptyset$, and for $\pi \leq w$ in the weak order, $\exists! f \in SC(Q, w)$ such that $Cone(\mathbb{R}(f)) \subset \pi(\Phi^+)$.

Is the map $[e, w] \mapsto SC(Q, w)$ a lattice morphism?

Experimentally, if Q is alternating, yes.

Is it surjective on acyclic subwords?

Experimentally, if Demazure($|Q|$) = w_0 , yes.

Thank you for your attention.