Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questio
	00 0000 0000	000 00 0000	00000 00	

Lattice properties of acyclic pipe dreams

Noémie Cartier (Université Paris-Saclay)

March 9, 2022

Joint work with Florent Hivert, Vincent Pilaud, Nantel Bergeron and Cesar Ceballos.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
•0	00 0000 0000	000 00 0000	00000 00	

- A generating set for \mathfrak{S}_n : $S = \{\tau_i = (i, i+1) \mid i \in [\![1, n-1]\!]\}$
- \rightarrow any permutation can be written as a word on the alphabet S.

An idea: study the **subwords** of a word Q

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
0•	00 0000 0000	000 00 0000	00000 00	

Word as a **sorting network**:

Representation of subwords:

Pipe dream: filling the shape with crosses + and elbows \cdot .

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 •000 0000	000 00 0000	00000 00	
An interesting example				

Set the exit permutation to $\omega = 1 n (n-1) \dots 2$

 \rightarrow every pipe except 1 has three elbows: two \boldsymbol{J} and one \boldsymbol{r} .

What happens if we put vertices on the elbows and edges on the pipes between them?

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0●00 0000	000 00 0000	00000 00	
An interesting example				

Set the exit permutation to $\omega = 1 n (n-1) \dots 2$

 \rightarrow every pipe except 1 has three elbows: two \boldsymbol{J} and one \boldsymbol{r} .

What happens if we put vertices on the elbows and edges on the pipes between them?

A (mirrored) binary search tree!

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	0000	00	00	
	0000	0000		
An interesting ex	ample			

pipe dreams with *n* pipes \longleftrightarrow binary trees with n-1 nodes

Equivalent to the rotation operation? To the insertion algorithm? Yes and yes.

rotations \leftrightarrow flips (ascending here)

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	0000	00	00	
	0000	0000		
An interesting ex	ample			

insertion algorithm \longleftrightarrow drawing the pipes one by one

Ex: in order 15243

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	
General case				

Previously: the set of pipe dreams with exit permutation 1 n(n-1)...2, partially ordered by oriented flip, is a lattice.

Can we extend this result?

First generalization: set any $\omega \in \mathfrak{S}_n$ as the exit permutation. Problem: not all pipe dreams work.

They need to be **reduced**:

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0●00	000 00 0000	00000 00	
a 1				

But it's still not enough! They also need to be acyclic.

Definition

- *P* pipe dream, $P^{\#}$ the contact graph of *P*:
 - vertex ←→ pipe
 - edge from *i* to $j \leftrightarrow$ contact \uparrow

P acyclic $\iff P^{\#}$ acyclic

 $\mathbf{\Sigma}(\omega):$ set of reduced acyclic pipe dreams of exit permutation ω

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 00●0	000 00 0000	00000 00	
General case				

lin(P): linear extensions of $P^{\#}$

- $\{\lim(P)\}_{P\in\Sigma(\omega)}$ is a partition of the weak order interval $[\mathrm{id},\omega]$
- lin(P) is an interval of the weak order
- the projections to the min and max of these intervals are order-preserving

Theorem (Pilaud)

The poset of acyclic reduced triangular pipe dreams of exit permutation ω is a lattice congruence of the weak order interval [id, ω].

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	
General case				

Ex: lattice congruence for $\omega = 31524$

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	• 00 00 0000	00000 00	
Alternate words	and pipe dream shapes			

Can we generalize this result to other sorting networks?

X not true in most sorting networks, even ones sorting $n(n-1) \dots 21$

Restriction to alternating sorting networks:

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	
Alternate words	and pipe dream shapes			

An alternating sorting network on *n* pipes \iff an *n*-shape:

Structure of an *n*-shape:

- an entrance path of length *n* at its south-west
- an exit path of length *n* at its north-east
- a stair path at its north-west
- a stair path at its south-east

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	00 00 0000	00000 00	
Alternate words and nine dream shapes				

Pipe dream on an *n*-shape F: filling F with crosses + and elbows + Reduced pipe dreams, contact graphs, acyclic pipe dreams, flips: same

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 •0 0000	00000 00	
Linear extensions of the contact graph				

- $\Sigma_F(\omega):$ acyclic reduced pipe dreams on F with exit permutation ω
- lin(P): linear extensions of P[#]

If
$$\Sigma_F(P) \neq \emptyset$$
, is $\{ lin(P) \mid P \in \Sigma_F(\omega) \}$ a partition of $[id, \omega]$?

No. A counter-example:

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions	
	00 0000 0000	000 00 0000	00000 00		
Linear extensions of the contact graph					

Some slightly weaker (but true!) properties:

- for $P, P' \in \Sigma_F(\omega)$, $P \neq P' \iff \operatorname{lin}(P) \cap \operatorname{lin}(P') = \emptyset$;
- $\bigcup_{P \in \Sigma_F(\omega)} \operatorname{lin}(P)$ is a lowerset;
- $[id, \omega] \subseteq \bigcup_{P \in \Sigma_F(\omega)} lin(P).$

Lemma

If $\pi = UbaV \in \mathfrak{S}_n$ is in lin(P) and a < b, then $\pi' = UabV$ is either in lin(P), or in lin(P') with P' obtained from P with a descending flip of pipes a and b.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	0000	00	00	
		0000		
Incertion algorithm				

 $Ins_F(\omega, \pi)$: the only $P \in \Sigma_F(\omega)$ such that $\pi \in In(P)$

How do we find $Ins_F(\omega, \pi)$?

Option 1: a sweeping algorithm to build P cell by cell. Option 2: an insertion algorithm to build P pipe by pipe in order π .

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0●00	00000 00	

Insertion algorithm

Sweeping algorithm: for $\omega = 23145$ and $\pi = 21345$

if ω⁻¹(i) < ω⁻¹(j), add an elbow γ
if ω⁻¹(i) > ω⁻¹(j) and π⁻¹(i) > π⁻¹(j), add a cross +
if i, j inversion of ω and non-inversion of π, add an elbow γ if you can still make the pipes end in order ω that way (3a), and a cross + otherwise (3b)

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 00●0	00000 00	
Insertion algorith				

The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Example: $\omega = 3241$, $\pi = 2134$:

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	
Insertion algorith	um			

Does it work?

If $\pi \leqslant \omega,$ yes, because:

- all free elbows accessible to a pipe can be completed at once;
- the pipes never go outside of the *n*-shape;
- if a pipe starts vertically (resp. ends horizontally), there will be an accessible free elbow facing its start (resp its end) when it is inserted;
- the resulting pipe dream is reduced.

The way $Ins_F(\omega, \pi)$ is created guarantees that $\pi \in Iin(Ins_F(\omega, \pi))$.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
			00000	
	0000	00	00	
	0000	0000		
The insertion is	a morphism			

The insertion is order-preserving.

Is it a lattice morphism from $\bigcup_{P \in \Sigma_F(\omega)} \ln(P)$ to $\Sigma_F(\omega)$?

Not in general:

- $\bigcup_{P \in \Sigma_F(\omega)} \ln(P)$ is a lowerset but not always an interval;
- $\mathsf{Ins}_F(\omega, \cdot) : [\mathsf{id}, \omega] \mapsto \Sigma_F(\omega)$ is not always surjective.

But if $\Sigma'_F(\omega) = \text{Ins}_F(\omega, [\text{id}, \omega])$, then $\text{Ins}(\omega, \cdot) : [\text{id}, \omega] \mapsto \Sigma'_F(\omega)$ is a lattice morphism.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	0000 00	
The insertion is	a morphism			

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	
The insertion is	a mornhism			

Lemma

Let P be a reduced pipe dream on F and i, j be pipes. If i has an elbow e weakly north-west to an elbow e' of j, and the rectangle with e as its north-west corner and e' as its south-west corner is contained in F, then $i \rightarrow j$ in $P^{\#}$.

Lemma

Let
$$P \in \Sigma_F(\omega)$$
 and $a, b, c \in \llbracket 1, n \rrbracket$ such that $a < b < c$ and $\omega^{-1}(c) < \omega^{-1}(b) < \omega^{-1}(a)$.

If there is an elbow of P containing the pipes a and c, one of the two following statements is true:

- $a \rightarrow b$ and $c \rightarrow b$ in $P^{\#}$;
- $b \rightarrow a \text{ and } b \rightarrow c \text{ in } P^{\#}$.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	
THE REPORT OF A	1.1.1			

Lemma (Björner & Wachs, 1991)

Let \lhd be a partial order on $[\![1, n]\!]$. Suppose that for all a < b < c:

- $a \lhd c \Rightarrow a \lhd b \text{ or } b \lhd c$
- $c \lhd a \Rightarrow c \lhd b \text{ or } b \lhd a$

Then the set of linear extensions of \lhd is an interval.

Theorem

For $P \in \Sigma_F(\omega)$, the set $lin(P) \cap [id, \omega]$ is an interval.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	0000 00	
The insertion is	a morphism			

Lemma

Let p^{\uparrow} and p^{\downarrow} be the respective projections on the top and the bottom of the fibers of $Ins_F(\omega, \cdot) : [id, \omega] \mapsto \Sigma_F(\omega)$. They are both order-preserving.

Theorem

The map $Ins_F(\omega, \cdot) : [id, \omega] \mapsto \Sigma'_F(\omega)$ is a lattice morphism.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	0000	00	0	
	0000	0000		
Sector and the set of all	a an ann bhann			

In which cases do we have $\bigcup_{P\in \Sigma_F(\omega)} \operatorname{lin}(P) = [\operatorname{id}, \omega]$ (and thus $\Sigma'_F(\omega) = \Sigma_F(\omega))?$

Theorem

If the alternating word corresponding to F contains a reduced expression of the permutation n(n-1)...21, then for any $P \in \Sigma_F(\omega)$, $lin(P) \subseteq [id, \omega]$.

Thus in that case $\Sigma_F(\omega)$ is a lattice quotient of [id, ω].

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	
Surjectivity of th	e morphism			

Constructing an alternating reduced word of $n(n-1) \dots 21$:

- choose $\epsilon \in \{-,+\}^n$
- entrance path: from (0,0), k^{th} step south if $\epsilon_k = -$, east if $\epsilon_k = +$
- exit path: from (n, 0), k^{th} step west if $\epsilon_k = -$, north if $\epsilon_k = +$
- stair paths from (0,0) to $(|\epsilon|_+,|\epsilon|_+)$ and from $(|\epsilon|_+,-|\epsilon|_-)$ to (n,0)

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further question
	00	000	00000	000
	0000	00		
	0000	0000		

Can we generalize this even more?

symmetric group \mathfrak{S}_n	Coxeter group W
transpositions $(i, i + 1)$	simple reflections
reduced pipe dreams	subword complex
pair of pipes	root in Φ
$P^{\#}$ acyclic	root cone is pointed
$\pi \in lin(P)$	root configuration $\subseteq \pi(\Phi^+)$
sweeping algorithm	sweeping algorithm

Theorem

For $Q \in S^*$ and $w \in W$ such that $SC(Q, w) \neq \emptyset$, and for $\pi \leq w$ in the weak order, $\exists ! f \in SC(Q, w)$ such that $Cone(\mathbb{R}(f)) \subset \pi(\Phi^+)$.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	000

Is the map $[e, w] \mapsto SC(Q, w)$ a lattice morphism?

Experimentally, if Q is alternating, yes.

Is it surjective on acyclic subwords?

Experimentally, if $Demazure(|Q|) = w_0$, yes.

Introduction	Triangular pipe dreams	Generalized pipe dreams	A lattice morphism	Further questions
	00 0000 0000	000 00 0000	00000 00	000

Thank you for your attention.